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ABSTRACT
Full body interactions are becoming increasingly important
for Human-Computer Interaction (HCI) and very essential in
thriving areas such as mobile applications, games and Ambi-
ent Assisted Living (AAL) solutions. While this enriches the
design space of interactive applications in ubiquitous and per-
vasive environments, it dramatically increases the complexity
of programming and customising such systems for end-users
and non-professional interaction developers. This work ad-
dresses the growing need for simple ways to define, customise
and handle user interactions by manageable means of demon-
stration and declaration. Our novel approach fosters the use
of Labanotation (as one of the most popular movement de-
scription visual notations) and off-shelf motion capture tech-
nologies for interaction recoding, generation and analysis.
This paper presents a novel reference implementation, called
Ambient Movement Analysis Engine, to allow for recording
movement scores and subscribing to events in Labanotation
format from live motion data streams.
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ACM Classification Keywords
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INTRODUCTION
Ambient interactive applications and systems depend highly
on context information for interaction acquisition and deliv-
ery. Human body movements currently resemble an essen-
tial part of this information. Thus, increasing advancements
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in utilising movements, in the context of HCI, on commer-
cial and research levels have encouraged wide adoption of
gestures in commodity devices, intensive use of gestures in
interactive applications and emerging calls for flubbed inter-
actions [7].

Research in the area of Natural User Interfaces (NUIs) has
clearly demonstrated the use of motion gestures, ranging from
simple hand gestures to potentially more complex and richer
gestures involving multiple body parts. Recently, afford-
able depth sensors such as Microsoft Kinect1 and Asus Xtion
PRO LIVE2 motion sensors have presented a very good play-
ground and opened opportunities for creating novel interac-
tion techniques, where human body movements are used to
control games and applications.

Following this success, the development of depth sensors
is being carried out strongly in mobile devices as well [6].
This has opened up a huge potential for large and diverse
user groups (including physically challenged users) to expe-
rience new forms of interactions different from traditional in-
put techniques. Therefore, NUIs have found their way into
wide range of AAL scenarios including mobile applications,
games, interactive television, smart kitchen appliances, etc.

Full body interactions enhance the opportunities to enrich
the design space and customisation of interactive applications
in ubiquitous and pervasive environments; nevertheless, the
complexity of programming and customising such systems
poses real challenges to professional interaction developers.
Non-professional interaction developers are even more chal-
lenged to create custom interactions (i.e., gestures) for appli-
cations.

End-user programming of interactive applications and sys-
tems is certainly following a strong trend to allow users to
design, develop, configure, and customise their interaction
environments according to their own needs and requirements.
Hence, easier and more manageable approaches for defining
and using motion gestures are desired.

Our work aims at reducing the realisation effort of config-
urable gesture control in AAL systems. Moreover, it ad-

1http://www.microsoft.com/en-us/kinectforwindows/, latest access
on 10.04.2015.
2http://www.asus.com/Multimedia/Xtion PRO LIVE/, latest access
on 10.04.2015.



dresses the growing need for simple ways to define, customise
and handle user interactions.

In order to define and use motion, developers are often re-
stricted to the state of the art pattern recognition techniques
that typically require training a classifier with a set of avail-
able training samples [4]. One-shot classifiers reduce the ef-
fort required for the system setup as in [12]. Trained clas-
sifiers are widely available; however, they often restrict the
developers to a required set of features and limited gestures.
Our approach fosters the use of off-shelf motion capture tech-
nologies for interaction modelling, integration and delivery
using Labanotation as one of the most popular visual nota-
tions for documenting physical movements. While this no-
tation is commonly used for capturing and analysing move-
ments in choreography, physical therapy, rehabilitation and
drama, we utilise the notation in the context of interactions as
part of an engine called Ambient Movement Analysis Engine.
While defining gestures by demonstration offers an easy and
convenient way to define gestures in many cases, declaration
is more precise and accurate. It offers better means to edit,
adjust, debug, and optimise parts of the gesture individually.
We rely on a hybrid approach to utilise the benefits of both
approaches. Hence, the engine allows to easily code, analyse
and integrate gestures modelled as Labanotation movement
sequences in interactive applications.

In this paper, we mainly describe the architecture, implemen-
tation and preliminary evaluation of the Ambient Movement
Analysis Engine. We highlight and discuss our contribution
in two parts, namely:

• The Movement Analyser: This module is mainly re-
sponsible for detecting movement sequences and creat-
ing movement scores. Movements are acquired from
camera streams by using computer vision techniques and
coded into Labanotation movement representation models.
Hence, the engine aims at providing detailed descriptions
on performed movements for further documentation, anal-
ysis and processing.

• The Movement Provider: This module is responsible
for subscription and delivery of interaction (i.e., gesture)
events based on movement scores. Hence, adequate event-
ing techniques are used to give software developers the op-
portunity to define gesture events in a human and machine-
readable format to trigger actions. The flexibility of the
used notation allows for subscriptions to macro (general)
or micro (very detailed) movements as required by interac-
tion scenarios.
To our best knowledge, our paper is the first to target a
gestures provider based on Labanotation, which excels in
providing readable gestures useful for debugging (observ-
ing correctly/incorrectly performed parts of the gesture),
programming-free authoring of gestures and a manageable
event-subscriber user interface.

RELATED WORK
This section covers selected previous work in the area of
movement description languages, as well as movement ac-
quisition and capturing.

Labanotation and Movement Description Languages
Despite the relevance of movement description and docu-
mentation, both remain unresting problems for many fields
such as dance choreography, movement rehabilitation, mo-
tion recognition and analysis, and human movement simula-
tion [3]. A very simple but informal approach to describe ges-
tures is sketching of key poses; however, this approach and
other informal approaches suffer from different drawbacks in-
cluding ambiguity, lack of accuracy, missing temporal infor-
mation, etc [1]. Formal movement description and analysis
approaches and systems offer more structured means to deal
with movements. Kahol et al.’s [11] calls for a formalised lan-
guage that facilitates teaching and learning movement styles,
permits universally understood scores and provides a univer-
sal language to communicate motion. One of the most used
human-readable and visual notation systems for describing
and analysing movements is called Labanotation [10]. We
have adopted Labanotation in our approach because it is used
in fields heavily relying on movement descriptions such as
choreography and dance; furthermore, it is successfully used
in HCI for interaction description and analysis as in [1, 2, 3,
15].

While dedicated Labanotation books, such as [10], offer thor-
ough explanation about the language, herein, we briefly in-
troduce its main constructs. Labanotation is a visual nota-
tion that is composed of a large number of abstract symbols,
which are used to present and document various movement
qualities such as direction, level (high, middle and low), du-
ration, dynamics and quality (often indicated by effort), in-
volved body parts, etc. For clarity, Figure 1 illustrates two
gestures (used in our evaluation) modelled in Labanotation as
simple interaction sequences. The movements are written on
a vertical ”body” staff, which is split into vertical columns
and a central line that separates the score into left and right
sides to present the left or right side body parts involved in
the movement. Labanotation is read from bottom to top in
a vertical direction. Movements for different body parts are
arranged into different columns. By default the inner four
columns (on each side) are already assigned to support (i.e.,
the distribution of body weight on the ground), legs, whole
body and arms (presented in Figure 1a by the columns (1)
to (4) respectively). All other columns can be individually
assigned to other body part (e.g., hands, feet, fingers, toes,
digits and toes). Furthermore, empty columns are simply not
relevant for the modelled gesture.

The beginning of movement is denoted by two parallel hor-
izontal lines connecting the two vertical outer lines (marked
in (5) in Figure 1a). For defining a starting pose, the corre-
sponding symbols should be placed below the start lines. If
no particular starting pose is required, this section of the staff
should be left empty. Analogously, two parallel horizontal
lines at the top of the staff may be used to denote the end
of the gesture. Timing is presented by measures and beats
(marked by (7) and (8) in Figure 1a). Beats are written as
short horizontal lines crossing the centre line of the score.
One beat in a score may denote one or more beats in a piece
of music. For the Ambient Movement Analysis Engine, beats
are defined in milliseconds. A measure on the other hand con-



sists of several beats and is written as a long horizontal line,
which is called bar or measure mark, crossing the centre line.
When used in describing interactions for NUIs, the measure
can be used to separate gestures into different sections that
may, for example, indicate the different essential stages or
parts of the interaction [3].

The rest of Figure 1a is read as follows: (6) The starting po-
sition of the right arm should be placed in the centre (orthog-
onal to the rest of the body) and in forward diagonal posi-
tion (arm lies between forward and right side). (7) The mea-
sure presents the total time required consisting of 5 beats. (8)
Beats in our gesture examples are defined as 200 milliseconds
units. (9) The arm should move to forward. Finally, (10) the
arm is supposed to return back to the starting position.

Figure 1b illustrates the throw gesture and is read as follows:
Columns (1) and (2) present the left upper and lower arms
respectively. (3) The starting position of the upper arm should
be orthogonal to the left side of the body and (2) the lower
arm should point up, together both forming an ”L” shape. (5)
The lower arm moves towards front and (6) ends in the front
position.

For authoring and modelling gestures, we have utilised our
previous work on the Interaction Editor [2] that offers an en-
vironment for the generation and management of visual La-
banotation scores as well as the conversion between visual
and a complementary Extensible Markup Language (XML)
representation.

Figure 1: The (a) wave gesture and (b) throw gesture mod-
elled as two simple interaction sequences.

Movement Acquisition and Capturing
In computer science, different approaches were reported for
motion capture. Hachimura and Nakamura [9] proposed an
algorithm that generates Labanotation data (LND) from mo-
tion capture data (mocap). Their motion capture approach de-
composes motion sequences into motion segments by differ-
ences in each joint’s velocity. Next, the direction and level of
the movement of each joint are quantised within every frame,
by dividing the space from 33 into 27 directions. The two

forward directions in Labanotation are combined to one for-
ward direction and the two backward directions are combined
to one backward direction. The result of the quantisation is a
tentative representation, which means that a part of it may be
redundant. These ambiguous parts are two sequences of sym-
bols that have the same meaning; therefore, rewriting rules
are applied to remove these redundancies. Using this as a ba-
sis, well-formed LND is generated by quantising the duration
of the symbols. Figure 2 shows the processing chain of this
approach. Yu et al. [18] proposed using user-generated La-
banotation for motion capture database search and retrieval.

Extraction Quantization Generation

Integration Quantization

of motion
segments

of motion
direction

of tentative
LND

of LND of duration

Figure 2: The five processing steps of the algorithm proposed
by Hachimura and Nakamura.

More recently, Zacharatos et al. [19] have used the effort com-
ponent in Laban Movement Analysis for emotion recognition
using a depth camera. [5] has presented an approach for gen-
erating Labanotation from motion capture data. Stored Bio-
Vision Hierarchical data (BVH) files were used to generate
Labanotation scores. The system was used to capture dance
gestures and generate the corresponding dance scores for five
body parts, namely the arms, legs and the head. In order to
generate the score from BVH files, the data stored in Euler an-
gles was firstly converted to world coordinate data. Similar to
[9], the movement for each body part was then analysed sepa-
rately, by identifying the one of the 27 subspaces in which the
body part is ranging. This analysis is done per frame but the
results were finally given per beat. By combining all parts, all
simple motions of the five body parts were generated.

Real-time classification of dance gestures was described by
Raptis et al. [17]. Their classification consisted of feature
extraction using an angular representation of the skeleton,
a cascaded correlation-based classifier and a distance metric
based on dynamic time-warping. They used common pattern
recognition methods, including training data and a classifier
to identify 28 different dance gestures. The gestures were per-
formed by professionals and several dancers of various skills
in order to have an oracle and training data. The angular rep-
resentation used for the classification system was based on the
assumption that the torso itself is rigid and each limb, namely
arm and leg, has two joints. In this representation, first-degree
joints (the ones next to the torso) are robust, since they only
depend on the torso itself. Second-degree joints are not ro-
bust because the origin of the spherical coordinate system is
not part of the rigid body. Euler angles carry the risk of gim-
bal lock, which can be avoided by quaternions; however, this
issue was considered to be unlikely and was not dealt with in
their work.



The aforementioned approach was recently followed and ex-
tended by Miranda et al. [16]. Their goal was mainly to avoid
problems resulting in a complete invariant angular represen-
tation. This approach followed a pure joint-angle represen-
tation to provide invariance to sensor orientation. The repre-
sentation used in their work aimed to provide online gesture
recognition from key poses, which are recognised by a multi-
class support vector machine (SVM). In order to determine
performed gestures efficiently, a decision forest containing all
gestures and their key poses were used. With the those im-
provements, the angular skeleton representation by [17] that
has been proven robust was enhanced further.

Major parts of our work aim at movement capture and ac-
quisition; nonetheless, the Ambient Movement Analysis En-
gine can be demarcated from traditional gesture recognition
since the recognition is not based on a black box classifier.
The recognition is ruled by movement representations, where
movement scores are generated and compared. Our approach
focuses on the detection and recording of physical move-
ments using Labanotation, in order to simplify the use and
utilisation of physical movements interactive applications.

Many common gesture recognition techniques, e.g., [17], rely
on using a classifier to label motion sequences and provide
confidences. However, they don’t provide detailed informa-
tion on the performed sequences in terms of a motion score
and they don’t support user-defined motion scores. In con-
trast, we believe that motion sequences offer our Ambient
Movement Analysis Engine more flexibility, where gestures
are simply described by motion scores. Those scores are
used for recognition independently from training data (not
even one-shot training data). The flexibility makes it possi-
ble to provide off-shelf motion capture technology; moreover,
user-defined motion scores can be used to trigger customised
events and to document performed human body movements.
Additionally, the Ambient Movement Analysis Engine does
not only provide the motion score as in [9] and [5] but also
provides gesture recognition of custom gestures modelled in
Labanotation as well.

SYSTEM ARCHITECTURE
The conceptual design of the Ambient Movement Analysis
Engine is shown in Figure 3. The user can register Labanota-
tion scores in XML format and can send the skeleton stream
to the engine. We have used the XML schema for Labanota-
tion scores, which was introduced in [2, 3]. The XML repre-
sentation can be used to enable a detailed movement analysis
for users. Scores can be visually viewed using the Interac-
tion Editor [2]. The schema provided in [2, 3] does not cover
the entire set of Labanotation symbols; however, it is suffi-
cient to cover the requirements of this work, in addition to its
adequate analysis of movements in most use cases. Skeleton
data is used as input, in order to avoid specific driver formats
and to support various data sources; nonetheless, this feature
costs additional preprocessing to convert the motion capture
data into a compatible skeleton.

The engine aims to recognise 1 the registered Labanotation
scores from 2 generated scores extracted from the skeleton
stream. 3 The occurrence of the registered sequences, which
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Figure 3: Ambient Movement Analysis Engine conceptual
design.

are subsequences in the stream, is detected. 4 Once a gesture
is recognised, an event is triggered in order to be processed
by the subscribed application. Additionally, 5 Labanotation
scores, which are based on the input skeleton stream, can be
exported in XML format, which enables other services to con-
sume motion sequences in Labanotation format.

The system overview, using the event triggering techniques,
is illustrated in Figure 4. The mechanisms are based on lis-
teners and network sockets. In order to guarantee reusability
and extensibility, the template method pattern is used. The
template method is a pattern of the Gang of Four (GoF) [8],
which makes it possible to replace parts of the algorithm, for
instance the skeleton representation or the sequence repre-
sentation, to customise representations as well as detection
algorithms. Interface realisations are used to implement the
desired actions. Different derived classes can be used to re-
alise different actions. Template implementations of Laban-
otation scores and 3D skeleton data are provided by the en-
gine. Furthermore, other implementations or the replacement
of specific parts of the algorithm are possible. The template
approach allows developers to use the Ambient Movement
Analysis Engine in other fields or for diverse purposes.

ENGINE LOGIC
The gesture recognition algorithm developed for the engine is
divided into two main parts. First, a feature extraction part is
used to generate Labanotation scores. Due to the way Laban-
otation scores are used to represent motion, the recognition
is based on key frames for each body part. The second part
of the algorithm is the recognition of motion sequences us-
ing decision forests and the generated scores. Both parts, to-
gether, are the basis for this work to provide movement events
based on the motion capture data provided by a depth sensor.
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Figure 4: Ambient Movement Analysis Engine eventing and
communication model. Interfaces for the listeners and real-
isations for client and server are provided by the engine and
can be used by custom applications. An application can use
listeners to access the data directly or a client application
can be registered to the server application to receive network
events.

The generation of Labanotation scores works similar to the al-
gorithm described by [9]. At first, a custom representation of
the motion capture data is generated from a general skeleton.
It contains the specific information, torso basis and relative
positions, which is required to generate Labanotation scores.
Then, poses are quantised using the provided skeleton data.
Next, key directions are searched in order to find the start and
the end of each of the body part’s movements. Finally, the
Labanotation scores are generated, based on the information
acquired in the previous steps. Figure 5 illustrates the pro-
cessing chain for the generation of the scores.

Generation Quantizationof skeletal
representation of poses

Search for
key directions

Generation
of (preliminary)
Labanotation

Figure 5: The processing chain for the generation of Labano-
tation scores from the skeleton data.

Since all information is provided for each frame and the quan-
tised pose information is stored into a buffer, the buffer size
must be defined. If sequences that should be recognised are
already provided, the buffer size is defined to be greater than

the maximum length of the sequences. When exporting a La-
banotation score, the length of the sequence must be defined.
Since this cannot be determined by the engine, the buffer size
can be set externally by calling the provided the movement
controller method.

After the generation of Labanotation scores, recognition of
registered sequences within the performed sequence can car-
ried out. Each time a sequence is recognised, an event is trig-
gered. Therefore, the observer pattern is applied and listeners
(i.e., client applications) can be registered with the engine.
Moreover, sockets are provided which cover network com-
munication as well as inter-process communication (IPC).

Skeleton Representation
The torso basis used for the detection of poses (i.e., quantisa-
tion of direction and level) and key poses (i.e., quantisation of
duration) is adapted from the skeleton representation of [16],
which evolved from [17]. The torso basis is used for the ori-
entation of the body in space in order to define and quantise
the 27 different key directions used by Labanotation. Thus,
the basis serves as a reference for the key directions and rel-
ative joint positions, which are used to get the direction and
level for each frame.
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LHand
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Figure 6: The 15 skeleton joints provided by the NiTE mid-
dleware. L is for left, R for right, S for shoulder, E for elbow,
K for knee, and F for foot.

At first, the torso basis is constructed from the provided torso
joints, i.e., torso given by the OpenNI/NiTE framework. Here,
we follow the assumption of [17] that the torso is a rigid body
since in most motions it is scarcely deformed. In order to ex-
tract the basis from the given joints, a Principal Components
Analysis (PCA) is applied to the n ⇥ 3 torso matrix (for n
torso joints, in case of the NiTE skeleton n = 6) and two
orthogonal main directions are obtained. A PCA is used to
extract the principal components of a set of observations by
sorting the eigenvectors of the matrix formed by these obser-
vations. This leads to calculating the main directions of a set
of points. Although, PCA is not entirely accurate when not
all torso joints lie on the same 3D plane, Raptis et al. [17]
argued that the ”basis is an exceptionally robust and reliable



foundation for a coordinate system based upon the orienta-
tion of the human body”. In terms of the torso basis, the PCA
is applied in order to receive the two main directions of the
torso, which are typically top-down and left-right. Therefore,
the first direction denotes the vertical direction (vertical to
the user), and the first eigenvector is used as the first com-
ponent u of the basis. The second direction is orthogonal to
the first one and denotes the horizontal direction (horizontal
to the user). Therefore, the second eigenvector is used for the
second component of the torso basis r. To have a fixed direc-
tion, top-down for vertical and right-left for horizontal, u and
r are aligned in these directions. This is done by referring
to the distance of the left shoulder joint to the right shoulder
joint added to the r, distance decreases if the vector points
to the wrong direction, and neck joint to torso joint added to
u, distance increases if vector points to the correct direction.
The third, and the final, component of the basis (t) is the cross
product of the first two components:

t = u⇥ r. (1)

Therefore, t always points from the torso to the front of the
performer.

After a normalisation of the three components, the orthonor-
mal torso basis is denoted by {u, r, t} (see Figure 7).

r

u

t

Neck

RS
LS

Torso

LHip RHip

Figure 7: The orthonormal torso basis {u, r, t} is generated
through the torso joins, which are six for the NiTE skeleton.
L is for left, R for right and S for shoulder.

The direction of weight plays an important role for Labano-
tation. When the user is in a standing position, it is equal to
the top-down direction of the torso, denoted by u, and there-
fore this direction is used as default. When another direction
is required for the body weight, the variable for the weight
of the skeleton can be used. The weight is used instead of
the top-down vector and the basis is modified in order to stay
orthonormal when the weight is specified.

Quantisation of Direction and Level
The quantisation of direction and level is carried out by calcu-
lating the distance of the real value to the set value. Distances
are given by the angular deviation in degrees. This is sim-
ple for vectors as the 27 set values are vectors provided by
the torso basis, since Labanotation’s direction and level are
relative to the body, and these always point in the same direc-
tion when represented by the torso basis. The angle, between
each bone and the set value vector, then denotes the distance
between the real (v) and the set (s) value:

� = angle(v, s). (2)

Note that � ranges from 0� to 180�, given the opposite direc-
tion is furthest from the set value.

After the calculation of distances, the direction with the least
distance is used as the quantisation of direction and level.
While this works for all other directions and levels, it may
be incorrect for the direction place middle. This is the case
when other directions have smaller distances, but place mid-
dle was performed. Therefore, place middle is favoured when
the distance is less than 22.5�.

Additionally, a hysteresis may be applied which prevents the
previously quantised direction and level from changes if the
angle is not greater than the given hysteresis threshold.

Quantisation of Duration
In order to quantise movements, i.e., finding the start and the
end of each movement, the quantised poses are processed.
First of all, the key poses for each body part are estimated.
Key poses define a change in direction and level and describe
the first local minimum of the distance to the direction and
level. To improve the accuracy, an interval in which the global
minimum of the distance can be searched, is applied.

Starting of a motion is determined for every found key pose,
for each of the body parts. Therefore, the first local maxi-
mum of the distance to the direction and level of the key pose
is searched for. The distance to the present direction is also
handled by using the same interval as for the key poses. If
the beginning of a motion exceeds the previous key pose, the
same is assumed to be the beginning of the motion.

Generation of Sequences
The generation of the Labanotation sequences is based on the
classes and interfaces provided for this purpose. These are
oriented towards the Labanotation XML schema, and pro-
vide a simple way to generate the desired sequences. First,
a lookup for key poses, the beginning of the motions, quan-
tisation of the starting time and duration is required. Next,
the division into the measure and the beat is performed. This
results in a Labanotation sequence, which is exported as an
XML Labanotation score.

Recognition of Sequences
The last step of the algorithm, used by the Ambient Move-
ment Analysis Engine, is the recognition of the sequences.
This means that generated sequences from the skeleton



stream are compared to previously registered sequences.
Hence, registered sequences performed by the user can be
detected. Similar to the recognition performed by the system
described by [16], a decision forest is used. In their system,
a decision forest is generated from the registered sequences
using key poses. However, key poses are not present in La-
banotation. The Ambient Movement Analysis Engine uses
key movements per body part for the decision forest, which
have a certain length and a position in the staff. As Laban-
otation movements are defined per body part, the decision
forest is composed of subforests for each of these parts. Each
subforest contains trees that carry information about the reg-
istered sequences for the body part it presents. The sequence
of trees is in reversed order, which makes it easy to match
these with the subsequent streaming sequence. Thus, the root
movement of a tree is the last movement of a body part. Fig-
ure 8 illustrates column sequences, the same as movements of
a specific body part, which are added to a decision forest for
the column. A decision maker is used to decide whether two
movement symbols match. This process takes in account the
position and length of the sequence and responds to approx-
imately equal items. A deviation up to a certain limit, which
can be customised, is accepted. The default limit is 0.5 beats.
The decision maker is used for insertion as well as recogni-
tion. Due to this, the same symbol, but of different length,
may be the root element of different trees.
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Figure 8: A small decision forest for column movements.
Note that the different sequences, displayed on the right side,
are written from bottom to top like Labanotation scores. The
trees, displayed on the left side, contain these sequences in
reverse order.

When a new sequence is to be added to the forest, some steps
must be followed. The first step is the translation into a de-
fault format. This means that the same timing information
and column definitions are used for all sequences in order to
have a correct recognition at the end. This implies that the
columns must be matched, and the positions and the dura-
tions of the movements must be adjusted.

The second step is applying rewriting rules due to the ambi-
guity of Labanotation. The sequence itself must be added to
the forest, in addition to any sequence that is semantically
equal. Therefore, all sequences, which may replace a se-
quence, are determined. This process is based on configured
rewriting rules, which contain a sequence of elements and
its possible replacement. Next, the lookup of occurrences of

subsequences must be added to the forest. When a match is
found the entire sequence is copied and the subsequence is re-
placed. The new sequence must then be checked for matches
of rewriting rules as well. This finally results in all sequences
that are semantically equal to the provided rewriting rules.

When it comes to the recognition of registered sequences in
the entire streamed sequence, the entire sequence will be pro-
cessed movement by movement. This processing starts at the
end of the sequence, this means starting with the last per-
formed movement. Matching decision trees for each body
part are then searched. If a match is found, all matches
of subsequences are stored and finally compared against the
matches of other body parts (see Figure 9). All sequences,
which have a match on every body part, are gestures that are
performed by the user and thus an event will be provided in-
forming on the recognition.
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Figure 9: The recognition of a sequence performed by a user.
The entire performed sequence is displayed on the right side
and the recognised sequence in fact its subsequence. A de-
cision forest, displayed on the left side, is used to check the
matching sequence.

In order to find sequences that actually match the registered
sequence, both the movement symbols in a column and the
absolute position of the movements in the staff, must be
checked. This means that the sequence cannot be checked
per column only, resulting in a recognition when all columns
match. Instead, the connection between the column move-
ments must be considered, which also includes starting poses.
Starting poses can be checked by taking the starting pose into
the trees as well. When checking reaches the leaf of the tree,
the distance to the next element of the performed sequence is
checked, (the distance to the last pose is not checked at this
stage. Thus, the check looks up whether there is no other
movement than the defined in the column. In this case, the
column of the streamed sequence must be empty as long as
other body parts are still performing movements. The cor-
rectness of the positions of the elements can be checked by
considering distances between a symbol and its predecessor,
and by checking only the last movement of a sequence (which
is the root element of the trees), for having the correct position
within the staff. Therefore, the last element of each column
sequence must be checked to have the correct distance to the
last movement of the entire score.



RESULTS AND EVALUATION
We have performed a preliminary study to evaluate the feasi-
bility of our novel approach based on the current implemen-
tation. We have hired twelve volunteers in a short recruit-
ment period. The participants were between 23 and 59 years
old from different educational and professional backgrounds
(i.e., students, secretary, project administration, and research
staff) and different levels of experience with gesture control
(from none to experienced).

The participants were introduced to a set of 10 gestures and
they were asked to perform each gesture 10 times in a real-
istic setup (a room with normal lighting and objects around).
First, the users were introduced to the experiment’s general
purpose. Next, a step-by-step explanation and demonstration
on how to perform each gesture were conducted by the in-
structor. Subsequently, the participants where given time for
practicing the gestures and to be familiar with the experiment
setup. Finally, the participants were asked to perform the ges-
tures.

Our apparatus for the evaluation consisted of: the Asus Xtion
PRO LIVE sensor for capturing the movement, a display for
instructing participants, a videocamera for recording the ex-
periment, and a PC for controlling the experiment procedure
and recording the results.

In total, we have collected 1160 gesture recordings (about 120
recordings per gesture, some gesture were dropped for one
participant due to shoulder problems).

Our gesture set contained 10 distinctive gestures that are eas-
ily understood and performed by the participants (illustrated
in Figure 10):

Figure 10: The gesture set used for the evaluation of the Am-
bient Movement Analysis Engine.

1. Swipe Moving the right arm horizontally fully stretched
from front to the right side.

2. Rotate Perform a 180 degree clockwise movement with
the right arm. The gesture starts with the arm fully
stretched in front high position and ends with the arm in
front low position.

3. Wave Horizontal waving with the right arm stretched in
front.

4. Scroll Up (SU) Moving the right arm up. The gesture
starts with the arm fully stretched in low position and ends
with the arm in front high position. The hand inner surface
should be kept facing up during the gesture.

5. Scroll Down (SD) Moving the right arm down. The ges-
ture starts with the arm fully stretched in high position and
ends with the arm in front low position. The hand inner
surface should be kept facing down during the gesture.

6. Pinch To Zoom Moving both arms fully stretched away
from each other starting in the lower front direction.

7. Throw Performing a throw with the right arm. The hand
starts with in a grip states and ends fully stretched with the
inner surface facing down.

8. Never Mind (NVM) Starting with the left upper arm to
the left side and the forearm to the front. Next, moving the
forearm up. The inner surface of the hand should be kept
facing the body.

9. Hammer Opposite of NVM, but forming a fist with the
left hand.

10. Clap Clap the both hands at once.

The results of our evaluation show that the engine is working
with a reasonable recognition rate of 78% with strict gesture
definition and 87% with a slight deviation. Table 1a illus-
trates the recognition rates achieved with one strict Labano-
tation score to describe the gesture (with different tolerance
values for deviance in position and duration). Table 1b illus-
trates the recognition rates using two closely similar Labano-
tation scores to describe each gesture for tolerance in move-
ment paths. False positive activations are registered with very
low rate (3.4% and 2.2% for one and two definitions respec-
tively). Those false activations are due to movements mostly
caused by the performers moving after the end of gesture.

Table 1 illustrates the different tolerance levels and corre-
sponding recognition rates. Tolerance levels denote how
much deviation is accepted for duration and position of sym-
bols in the sequence. The gestures in our set are defined for a
1 second in length (i.e., 5 beats). Our results show that for low
tolerance levels, recognition rates are low. This is due to the
actual time difference between the performed gesture by the
participants to the defined gesture. Generally, gesture execu-
tion deviations from the defined Labanotation score should be
allowed, because it is very difficult for participants to match
the define time precisely. Of course, the timing gap between
the defined and the performed gesture may certainly improve
with repetition and increasing familiarity with the gesture. As
seen in Table 1a, the low recognition rate of the wave gesture
is due to the different sizes of our participants. The used depth
sensor was easily confused between the level of the arm (fac-
ing straight or slightly down). The recognition rate is much
improved by allowing some a deviation of the arm position as
in Table 1b.



Table 1: The recognition rates of the engine. One beat is set to 200 ms and the tolerance denotes how much deviation is accepted
for duration and position of symbols in the sequence.

(a) No deviations allowed (one strict Labanotation score)

Score Tolerance in Beats
0.5 1 1.5 2 3 4 5

Clap 0.2 0.43 0.58 0.68 0.7 0.7 0.7
NVM 0.23 0.59 0.74 0.77 0.8 0.82 0.82
Hammer 0.19 0.53 0.76 0.8 0.8 0.8 0.8
Pinch 0.1 0.38 0.64 0.76 0.93 0.97 0.97
Rotate 0.05 0.17 0.28 0.39 0.5 0.59 0.6
SD 0.34 0.55 0.73 0.83 0.93 0.95 0.97
SU 0.06 0.25 0.67 0.83 0.95 0.95 0.96
Swipe 0.36 0.61 0.76 0.85 0.92 0.93 0.93
Throw 0.01 0.17 0.34 0.46 0.55 0.59 0.59
Wave 0 0.05 0.1 0.18 0.3 0.42 0.44
Total 0.15 0.37 0.56 0.65 0.74 0.77 0.78

(b) Deviation allowed (two closely similar scores)

Score Tolerance in Beats
0.5 1 1.5 2 3 4 5

Clap 0.23 0.47 0.62 0.72 0.74 0.74 0.74
NVM 0.25 0.63 0.78 0.82 0.85 0.86 0.86
Hammer 0.19 0.53 0.76 0.81 0.82 0.82 0.82
Pinch 0.12 0.55 0.79 0.89 0.96 0.97 0.97
Rotate 0.07 0.23 0.35 0.49 0.62 0.72 0.73
SD 0.34 0.55 0.73 0.83 0.93 0.95 0.97
SU 0.11 0.41 0.83 0.95 0.96 0.96 0.96
Swipe 0.53 0.81 0.96 0.98 1 1 1
Throw 0.01 0.21 0.57 0.62 0.74 0.75 0.75
Wave 0 0.05 0.11 0.25 0.57 0.79 0.86
Total 0.18 0.44 0.65 0.73 0.82 0.86 0.87

Compared to previous studies in this domain, such as
Hachimura et al. [9] and Chen et al. [5], our work is the
first to report evaluation data and the first to use live sensor
data streams for recording and analysing Labanotation move-
ments scores. When comparing our approach to other gesture
recognition systems, the Ambient Movement Analysis En-
gine clearly demonstrates promising results. Miranda et al.
[16] achieved an overall recognition rate of 83.5% and up to
97.3% for one of three specific set of gestures tested in their
evaluation using pose kernel learning and decision forests. A
direct comparison with previous studies cannot be justified as
our approaches are not similar and the tested gestures are not
identical.

The efficiency of the system was evaluated by checking the
required time to process the pose buffer for different buffer
sizes. The evaluation was done on an i7 CPU M 640 @
2.80GHz machine with 6GB RAM running Ubuntu 14.04
LTS. The results indicate that the time requirement (computa-
tional cost of at most 33ms) is fulfilled on an average machine
for a buffer size of up to 3600 frames (which corresponds to
a two minute buffer).

We believe that the engine can be improved to achieve bet-
ter results and provide more elaborated movement informa-
tion. A hybrid approach using both, a high performance ges-
ture recognition system (for recognition) and our algorithm
for Labanotation motion score generation would provide high
recognition accuracy as well as detailed motion descriptions.
Another approach is to change our recognition approach from
decision forests to a trained classifier using the Labanotation
scores’ elements for feature vectors and compare the perfor-
mance with the current approach. Additionally, recognition
rate can be improved with a more extensive Labanotation
model covering more relevant information (our current im-
plementation does not cover all structural movements such as
turns).

Our current Ambient Movement Analysis Engine implemen-
tation is an extensible library that can be used for gesture
control and provides the chance to extend or modify its be-

haviour. The engine provides simple access to the OpenNI
driver but it can be extended for the operation with any other
driver by referring to the skeleton as input. The generic en-
gine can be configured to work with different skeletons (hier-
archy defined) and the flexible Labanotation. A wider range
of the Labanotation specification can be implemented by sim-
ply extending the controllers entrusted with the task of gen-
erating Labanotation. Besides plain gesture recognition and
eventing, the engine provides to record detailed descriptions
of the performed movements. These recordings provide stan-
dard human-readable movement scores based on Labanota-
tion, which can be an essential part of motion-based inter-
action documentation. Two context delivery options were
implemented, namely the observer pattern and client-server
communication, for eventing for further processing. Both op-
tions are accessible via a dedicated application programming
interface (API).

CONCLUSION
Within the scope of this work, the Ambient Movement Anal-
ysis Engine for recording and analysing live off-shelf motion
capture data streams in Labanotation movement scores was
designed, implemented and evaluated. To the best of our
knowledge, our approach is the first to provide this type of
recognition and generation of context events. The engine ad-
dresses the growing need for simple ways to create, customise
and handle user interactions, especially through demonstra-
tion and declaration. The engine dramatically reduces the
complexity of programming, and customisation of such sys-
tems for end-user programming and non-professional inter-
action developers. In addition to a detailed description of the
engine and our recognition approach, we have provided a pre-
liminary evaluation of the engine with a reasonable recogni-
tion rate of 78%, with strict gesture definition, and up to 87%
with a slight deviation for recognising gestures modelled in
Labanotation from the live data streams of an off-shelf bud-
get depth sensor.



FUTURE WORK
The Ambient Movement Analysis Engine can be improved
and extended to cover more Labanotation, such as detect-
ing steps, turns and body weight. Moreover, another aspect
that could potentially be implemented is a feedback loop for
the skeleton data based on the generated Labanotation score.
Besides the improvement of skeleton data, a visualiser for
missing movements of a defined sequence would be useful.
Further evaluations could be carried out with multiple depth
sensors and larger test groups. Despite the successful and
wide usage of Labanotation to model movement amongst
non-technical users, for instance dancers, artists and chore-
ographers [14], we believe that an evaluation of the end-user
programming aspects using Labanotation for modelling ges-
tures, is a very relevant theme. Hence, an evaluation study in
this direction is currently being planned as an own contribu-
tion to be followed.

ACKNOWLEDGEMENT
This work is partially sponsored by the The German Federal
Ministry of Education and Research (BMBF) funded project
Ensembles (Code - 16SV6369).

REFERENCES
1. Altakrouri, B. Ambient assisted living with dynamic

interaction ensembles. PhD thesis, Universität zu
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